Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.

نویسندگان

  • Jared L Hjersted
  • Michael A Henson
  • Radhakrishnan Mahadevan
چکیده

A dynamic flux balance model based on a genome-scale metabolic network reconstruction is developed for in silico analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed-batch performance in glucose and glucose/xylose media. Dynamic analysis is shown to provide a single quantitative measure of fed-batch ethanol productivity that explicitly handles the possible tradeoff between the biomass and ethanol yields. Productivity optimization conducted to rank achievable fed-batch performance demonstrates that the genetic manipulation strategy and the fed-batch operating policy should be considered simultaneously. A library of candidate gene insertions is assembled and directly screened for their achievable ethanol productivity in fed-batch culture. A number of novel gene insertions with ethanol productivities identical to the best metabolic engineering strategies reported in previous studies are identified, thereby providing additional targets for experimental evaluation. The top performing gene insertions were substrate dependent, with the highest ranked insertions for glucose media yielding suboptimal performance in glucose/xylose media. The analysis results suggest that enhancements in biomass yield are most beneficial for the enhancement of fed-batch ethanol productivity by recombinant xylose utilizing yeast strains. We conclude that steady-state flux balance analysis is not sufficient to predict fed-batch performance and that the media, genetic manipulations, and fed-batch operating policy should be considered simultaneously to achieve optimal metabolite productivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Switching the mode of sucrose utilization by Saccharomyces cerevisiae

BACKGROUND Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rat...

متن کامل

Enhanced Bioethanol Production in Batch Fermentation by Pervaporation Using a PDMS Membrane Bioreactor

The integration of batch fermentation and membrane-based pervaporation process in a membrane bioreactor (MBR) was studied to enhance bioethanol production compared to conventional batch fermentation operated at optimum condition. For this purpose, a laboratory-scale MBR system was designed and fabricated. Dense hydrophobic Polydimethylsiloxane (PDMS) membrane was used for pervaporation. For fer...

متن کامل

Effect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats

The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...

متن کامل

The Effect of Yeast (Saccharomyces cerevisiae) Culture Versus Fla-ovomycin Supplementation on Laying Hen Diets and Their Co-mparative Influence on The Late Stage Production Performnce

The effect of yeast culture (Saccharomyces cerevisiae) supplementation on laying hen diets was tested against flavomycin supplementation during 12 weeks, using 112 Brown Bovans laying hens, 52 week-old, divided into 7 equal groups fed on a basal diet containing 18.8% crude protein and 2810 kcal/kg ME (metabolizable energy) feed. Three groups were supplemented with 3 different levels of commerci...

متن کامل

Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 97 5  شماره 

صفحات  -

تاریخ انتشار 2007